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Abstract

Dynamic behaviours and stability of an automatic ball balancer (ABB) in an optical disk drive are
analyzed based on the proposed three-dimensional dynamic model. For dynamic analysis, the feeding deck
with the ball balancer and a spindle motor is modelled as a rigid body with six degrees of freedom. The
nonlinear equations of motion are derived using Lagrange’s equation in order to describe the translational
and rotational motions of the system. From the derived nonlinear equations, the linearized equations of
motion in the neighbourhood of a balanced equilibrium position are obtained by the perturbation method.
These equations are coupled, linear, differential equations with time-dependent periodic coefficients, from
which the stability of the system is analyzed by using the Floquet theory. Finally, the time responses
are computed to verify the results of the stability analysis, and to investigate the balancing performance of
the ABB.
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1. Introduction

Most manufacturers of high-speed optical disk drives, such as CD-ROM or DVD drives,
nowadays adopt an automatic ball balancer (ABB) to automatically reduce the variable
imbalance of rotating mechanisms. This imbalance is usually a result of unavoidable imperfection
in the manufacturing and assembling processes of an optical disk and a spindle motor. Once in a
while, mistakes during data recording and labelling on a disk can also be a source of imperfection.
Under these circumstances, it is impossible to make rotating systems balanced by only one time of
balancing at an initial stage because the amount of imbalance varies depending on operating
conditions. The ABB are thus widely used for the purpose of resolving the difficulty.
Although various types of automatic balancers are used in not only optical disk drives but also

many other application areas, e.g., washing machines [1] and machining tools [2], not many
studies have been reported. The basic research was initiated by Alexander [3] and Cade [4] in the
1960s. In the 1990s, while Lee and Van Moorhem [5] analyzed the dynamic behaviour of
automatic balancers for a non-autonomous system, Chung and Ro [6] and Hwang and Chung [7]
studied the Jeffcott rotor from the standpoint of an autonomous system by using polar
coordinates instead of rectangular coordinates. However, since most of the previous studies
focused on an automatic balancer itself, there are very few studies for an optical disk drive with
the ABB.
The performance of the ABB installed in an optical disk drive was recently evaluated by Kang

et al. [8], Huang et al. [9] and Kim and Chung [10]. In these studies, after the equations of motion
were derived from the two-dimensional mathematical models of the ABB and feeding deck, the
stability and parametric analyses were performed using various methods to obtain the design
guidelines of ABBs. However, the influence of the out-of-plane tilting motions of a feeding deck
on the balancing performance of the ABB could not be evaluated because the analyses were based
on the two-dimensional, in-plane models. Regarding non-planar dynamic modelling and analysis,
one available work is that of Chao et al. [11]. In their study, the radial vibration and the tilting
motion of the rotor-disk assembly were calculated by numerical integrations.
In this paper, a three-dimensional, mathematical model of an ABB in a commercial optical disk

drive is developed considering not only the in-plane but also the out-of-plane translational and
rotational motions of the feeding deck. Based on the model, the nonlinear equations of motion for
a non-autonomous system are derived using Lagrange’s equation. Applying the perturbation
method to the nonlinear equations, the linearized equations of motion in the neighbourhood of a
balanced equilibrium position are obtained. Next, for various design parameters, the stability
analyses are performed by using the Floquet theory. Finally, time responses are calculated to
verify the stability plots and to show the effectiveness of the ABB. Some issues regarding the out-
of-plane and the in-plane motions are also discussed.
2. Modelling and nonlinear equations of motion

The ABB is comprised of an annular structure with a race containing a viscous damping fluid
and a plurality of spherical balls as shown in Fig. 1. The balancing balls are freely movable in the
race. The ABB and the rotor of a spindle motor are assembled into a single body, so that they are
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Fig. 1. ABB for an optical disk drive: (a) the three-dimensional view, (b) the cross-sectional view.

Fig. 2. Schematic of the ABB installed in an optical disk drive (not drawn to scale).
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rotating at a constant angular speed o: Since the ABB plays an additional role of the conventional
turntable, an optical disk is put on the ABB and it is fixed between the ABB and the magnetic
clamper.
Shown in Fig. 2 is a schematic of the ABB installed in an optical disk drive. The stationary part

of the spindle motor is rigidly fixed on the feeding deck which is mounted on the base of the
optical disk drive by four suspension washers. Each suspension washer is modelled as an
equivalent linear spring and damper. Points C and G denote the rotation centre and the mass
centre, respectively, of the rotor system including the ABB, the spindle motor and the optical disk.
In general, points C and G do not coincide with each other because the rotor system may have
mass unbalancing. The distance e between C and G is known as the mass eccentricity. For the
simplicity of analysis the feeding deck is assumed as a uniform thin rectangular plate, where width
and length are a and b, respectively; hence, the mass centre P of the feeding deck coincides with
the geometric centre of the plate. The distance between points P and C is given by d.
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It is also assumed in this article that the mass centre of the feeding deck P and the mass centre
of the rotor system G are located on the same plane, because the latest commercial optical disk
drives are very slim. If the locations of the mass centres of the feeding deck, the balancing balls,
the spindle motor and the optical disk cannot be assumed to be on the same plane, a slightly
different model needs to be developed. To researchers who want to pursue this direction the
authors recommend the recent work by Chao et al. [11], in which one can find how to efficiently
model that case, and one can also evaluate the influence of the mass-centre offsets on the tilting
motion of the rotor-disk assembly.
In this study, to consider both the in-plane and the out-of-plane motions, the feeding deck is

modelled as a rigid body with six degrees of freedom: three translational and three rotational
ones. As shown in Fig. 3, the Euler angles g; a and b are used to describe the rotational motion of
the system in the three-dimensional space. The XYZ coordinate system is a space-fixed inertial
reference frame. A rotation g about the Z-axis puts the system into an orientation coincident with
the primed x0y0z0 coordinate system, and a further rotation a about the x0-axis results in the
double-primed x00y00z00 coordinate system. Finally, the third rotation b about the y00-axis yields
the xyz coordinate system that is fixed on the feeding deck. These coordinate transformations can
be arranged in matrix form as follows:

x0 ¼ TgX; x00 ¼ Tax
0; x ¼ Tbx

00; (1)

where

Tg ¼

cos g sin g 0

� sin g cos g 0

0 0 1

2
64

3
75; Ta ¼

1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75; Tb ¼

cosb 0 � sin b

0 1 0

sinb 0 cosb

2
64

3
75; (2)

X ¼ XIþ YJþ ZK; x0 ¼ x0i0 þ y0j0 þ z0k0; x00 ¼ x00i00 þ y00j00 þ z00k00; x ¼ xiþ yjþ zk; (3)
Fig. 3. Configuration of the ABB and the Euler angles to describe the rotational motions.
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in which I; J and K are the unit vectors along the X -, Y - and Z-axis; i0; j0 and k0 are the unit
vectors along the x0-, y0- and z0-axis; i00; j00 and k00 are the unit vectors along the x00-, y00- and z00-axis;
and i; j and k are the unit vectors along the x-, y- and z-axis, respectively. As a result, the
orientation of the feeding deck with respect to the inertial reference frame can be expressed by the
angles a; b and g: On the other hand, the translational motion of the feeding deck is represented
by the displacement vector rc in Fig. 3. Also, the angular position of the ith balancing ball Bi

can be described by the pitch radius R of the race and the angle fi with respect to the angular
position of G:
First, the kinetic energy of the system is considered. The position vector of the mass

centre G can be expressed in the xyz coordinate system by using the rotation matrices Tg;Ta

and Tb:

rG ¼ TbTaTgrC=XYZ þ rCG=xyz; (4)

where

rC=XYZ ¼ XIþ YJþ ZK; rCG=xyz ¼ �ðcosotiþ sinotjÞ; (5)

in which t is time. By substituting Eqs. (2) and (5) into Eq. (4), rG can be expressed as

rG ¼ ½X ðcos b cos g� sin a sinb sin gÞ þ Y ðsin a sin b cos gþ cos b sin gÞ

þ Z cos a sinbþ � cosot�iþ ð�X cos a sin gþ Y cos a cos gþ Z sin aþ � sinotÞj

þ ½X ðsinb coscþ sin a cos b sin gÞ þ Y ð� sin a cos b cos gþ sinb sin gÞ

þ Z cos a cosb�k: ð6Þ

Similarly, the position vector of the ith ball, rBi
; and the position vector of point P, rP; may be

written as

rBi
¼ ½X ðcos b cos g� sin a sin b sin gÞ þ Y ðsin a sin b cos gþ cos b sin gÞ

þ Z cos a sinbþ R cosðfi þ otÞ�iþ ½�X cos a sin gþ Y cos a cos g

þ Z sin aþ R sinðfi þ otÞ�jþ ½X ðsin b coscþ sin a cos b sin gÞ

þ Y ð� sin a cosb cos gþ sinb sin gÞ þ Z cos a cosb�k; ð7Þ

rP ¼ ½X ðcos b cos g� sin a sinb sin gÞ þ Y ðsin a sin b cos gþ cos b sin gÞ

þ Z cos a sinb�iþ ð�X cos a sin gþ Y cos a cos gþ Z sin a� dÞj

þ ½X ðsinb coscþ sin a cos b sin gÞ þ Y ð� sin a cos b cos gþ sinb sin gÞ

þ Z cos a cosb�k: ð8Þ

On the other hand, the angular velocity vectors of the rotor and feeding deck, xG and xP;
respectively, are given by

xG ¼ ð_a cos b� _g cos a sin bÞiþ ð _bþ _g sin aÞjþ ð_a sin bþ _g cos a cos bþ oÞk; (9)

xP ¼ ð_a cos b� _g cos a sin bÞiþ ð _bþ _g sin aÞjþ ð_a sinbþ _g cos a cos bÞk: (10)
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When the ABB has n balls, whose masses and sizes are all the same, the kinetic energy T is then
given by

T ¼ 1
2

M drG
dt

	 drG
dt

þ 1
2

MP
drP
dt

	 drP
dt

þ 1
2
xT

GJGxG þ 1
2
xT

PJPxP þ 1
2

m
Xn

i¼1

drBi

dt
	
drBi

dt
; (11)

where M, MP and m are masses of the rotor system, the feeding deck and each balancing ball; and
JG and JP are the inertia matrices of the rotor system and the feeding deck. Note that the mass
moment of inertia of the balancing ball is neglected because the ball is very small. The inertia
matrices JG and JP can be written in matrix form

JG ¼

Jx 0 0

0 Jy 0

0 0 Jz

2
64

3
75; JP ¼

JPx 0 0

0 JPy 0

0 0 JPz

2
64

3
75; (12)

in which Jx; Jy or Jz is the mass moment of inertia of the rotor system about the x-, y- or z-axis;
JPx; JPy or JPz is the mass moment of inertia of the feeding deck about an axis which is passing
through point P and parallel to the x-, y- or z-axis, respectively.
Now, let us consider the potential energy of the system. Neglecting gravity, the potential energy

can be computed from

V ¼ 1
2

k
X4
i¼1

rDi
	 rDi

: (13)

In the above, rDi
is the displacement vector of the each corner of the feeding deck where the

suspension washer is attached, and k is the equivalent stiffness of the suspension washer. It is
assumed that the stiffness is the same regardless of orientation. The deformation of four washers
can be expressed as

rDi
¼ TbTaTgrC=XYZ þ rCDi=xyz � TbTaTgrODi=XYZ; i ¼ 1; 2; 3; 4; (14)

where

rCD1=xyz ¼
a

2
iþ

b

2
� d

� 	
j; rCD2=xyz ¼ �

a

2
iþ

b

2
� d

� 	
j; rCD3=xyz ¼ �

a

2
i�

b

2
þ d

� 	
j;

rCD4=xyz ¼
a

2
i�

b

2
þ d

� 	
j; rOD1=XYZ ¼

a

2
Iþ

b

2
� d

� 	
J; rOD2=XYZ ¼ �

a

2
Iþ

b

2
� d

� 	
J;

rOD3=XYZ ¼ �
a

2
I�

b

2
þ d

� 	
J; rOD4=XYZ ¼

a

2
I�

b

2
þ d

� 	
J: (15)

On the other hand, Rayleigh’s dissipation function F is given by

F ¼ 1
2

c
X4
i¼1

drDi

dt
	
drDi

dt
þ 1

2
D

Xn

i¼1

_f
2

i ; (16)
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where D is the viscous drag coefficient of the balancing ball in the damping fluid, and c is the
equivalent damping coefficient of the suspension washer. Rubber, plastic, or metal is typically
used as a damping material of the suspension washer in optical disk drives [8,9].
The equations of motion for the system are now derived using Lagrange’s equation

given by

d

dt

qT

q _qk

� 	
�

qT

qqk

þ
qV

qqk

þ
qF

q _qk

¼ 0; (17)

where qk are the generalized coordinates. Choose as generalized coordinates X, Y, Z, a; b; g and
fi ði ¼ 1; 2; . . . ; nÞ; therefore, the dynamic behaviour of the system is governed by n þ 6
independent equations of motion. Substitution of Eqs. (11), (13) and (16) into Eq. (17) yields the
equations of motion. Assuming that X ;Y ;Z; a; b; and g are small, the simplified governing
equations are obtained as follows:

ðM þ MP þ nmÞ €X þ 4c _X þ 4kX þ ðMPd � M� sinotÞ€gþ ð4dc � 2M�o cosotÞ_g

þ ð4dk þ M�o2 sinotÞg� mR
Xn

i¼1

f½€gþ €fi � ð _fi þ oÞ2g� sinðfi þ otÞ

þ ½g €fi þ ð _fi þ oÞð2_gþ _fi þ oÞ� cosðfi þ otÞg ¼ M�o2 cosot; ð18Þ

ðM þ MP þ nmÞ €Y þ 4c _Y þ 4kY þ M� cosot€g� 2M�o sinot_g� M�o2 cosotg

þ mR
Xn

i¼1

f½€gþ €fi � ð _fi þ oÞ2g� cosðfi þ otÞ

� ½g €fi þ ð _fi þ oÞð2_gþ _fi þ oÞ� sinðfi þ otÞg ¼ M�o2 sinot; ð19Þ

ðM þ MP þ nmÞ €Z þ 4c _Z þ 4kZ � ðMPd � M� sinotÞ€a� ð4dc � 2M�o cosotÞ_a� 4dka

� M� €b cosot þ 2M�o _b sinot þ mR
Xn

i¼1

f½� €bþ a €fi þ 2ð _fi þ oÞ_aþ ð _fi þ oÞ2b� cosðfi þ otÞ

þ ½€aþ b €fi þ 2ð _fi þ oÞ _b� ð _fi þ oÞ2a� sinðfi þ otÞg ¼ M�o2ða sinot � b cosotÞ; ð20Þ

Jx þ JPx þ MPd2
þ M �2 sin2ot þ mR2

Xn

i¼1

sin2ðfi þ otÞ

" #
€a

þ ðb2
þ 4d2

Þc þ 2M�2o sinot cosot þ 2mR2
Xn

i¼1

ð _fi þ oÞ sinðfi þ otÞ cosðfi þ otÞ

" #
_a

þ ðb2
þ 4d2

Þka� M�2 sinot cosot þ mR2
Xn

i¼1

sinðfi þ otÞ cosðfi þ otÞ

" #
€b
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þ Jzoþ 2M�2o sin2ot þ 2mR2
Xn

i¼1

ð _fi þ oÞ sin2ðfi þ otÞ

" #
_bþ mR2b

Xn

i¼1

€fi

þ �MPd þ M� sinot þ mR
Xn

i¼1

sinðfi þ otÞ

" #
€Z � 4dc _Z � 4dkZ ¼ 0; ð21Þ

Jy þ JPy þ M�2 cos2ot þ mR2
Xn

i¼1

cos2ðfi þ otÞ

" #
€b

þ a2c � 2M�2o sinot cosot � 2mR2
Xn

i¼1

ð _fi þ oÞ sinðfi þ otÞ cosðfi þ otÞ

" #
_bþ a2kb

� M�2 sinot cosot þ mR2
Xn

i¼1

sinðfi þ otÞ cosðfi þ otÞ

" #
€a

� Jzoþ 2M�2o cos2ot þ 2mR2
Xn

i¼1

ð _fi þ oÞ cos2ðfi þ otÞ

" #
_a

� M� cosot þ mR
Xn

i¼1

cosðfi þ otÞ

" #
€Z ¼ 0; ð22Þ

½Jz þ JPz þ MPd2
þ M�2 þ nmR2�€gþ ða2 þ b2

þ 4d2
Þc_gþ ða2 þ b2

þ 4d2
Þkg

þ MPd � M� sinot � mR
Xn

i¼1

sinðfi þ otÞ

" #
€X þ 4dc _X þ 4dkX

þ M� cosot þ mR
Xn

i¼1

cosðfi þ otÞ

" #
€Y þ mR2

Xn

i¼1

€fi ¼ 0; ð23Þ

mR2ð€gþ €fiÞ þ D _fi � mRf €X sinðfi þ otÞ � €Y cosðfi þ otÞg ¼ 0; i ¼ 1; 2; . . . ; n: (24)

What has to be noticed here is that the equations of motion given by Eqs. (18)–(24) are coupled
nonlinear differential equations with time-dependent periodic coefficients.
3. Linearized equations

The perturbation method is used to obtain equilibrium positions and linearized equations of
motion in the neighbourhood of the equilibrium positions in order to compute natural frequencies
and to investigate the stability of the system. The generalized coordinates X ; Y ; Z; a; b; g and
fi may be replaced by

X ¼ X � þ DX ; Y ¼ Y � þ DY ; Z ¼ Z� þ DZ;

a ¼ a� þ Da; b ¼ b� þ Db; g ¼ g� þ Dg; fi ¼ f�
i þ Dfi; (25)
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where X �; Y �; Z�; a�; b�; g� and f�
i are parameters to represent the equilibrium positions and

DX ; DY ; DZ; Da; Db; Dg and Dfi are the small perturbations of the generalized coordinates in
the vicinity of the equilibrium positions. Substitution of Eq. (25) into Eqs. (18)–(24) results in the
equilibrium positions and the linearized equations around the equilibrium positions.
As discussed in Refs. [6,7], the equilibrium positions of an optical disk drive with the ABB may

be classified into two cases: the balanced ðX � ¼ Y � ¼ Z� ¼ a� ¼ b� ¼ g� ¼ 0Þ or the unbalanced
equilibrium positions. Since the balanced equilibrium position is practically more important than
the unbalanced equilibrium positions in the design of the ABB, this article focuses on only the
balanced equilibrium position and linearized equations about the corresponding position for the
stability analysis. On the other hand, the dynamics of the ABB system for the various unbalanced
ball positions is well illustrated and analyzed in Ref. [8].
When the system is balanced, the positions of the balancing balls may be calculated from

M�

mR
þ

Xn

i¼1

cosf�
i ¼ 0;

Xn

i¼1

sinf�
i ¼ 0: (26)

The linearized equations of motion in the neighbourhood of the balanced equilibrium
position can then be expressed in terms of DX ; DY ; DZ; Da; Db;Dg and Dfi: For notational
simplicity, deleting D from DX ; DY ; DZ; Da; Db; Dg and Dfi; the final linearized equations can
be written as

ðM þ MP þ nmÞ €X þ 4c _X þ 4kX þ dðMP€gþ 4c_gþ 4kgÞ

� mR
Xn

i¼1

½ð €fi � o2fiÞ sinðf
�
i þ otÞ þ 2o _fi cosðf

�
i þ otÞ� ¼ 0; ð27Þ

ðM þ MP þ nmÞ €Y þ 4c _Y þ 4kY

þ mR
Xn

i¼1

½ð €fi � o2fiÞ cosðf
�
i þ otÞ � 2o _fi sinðf

�
i þ otÞ� ¼ 0; ð28Þ

ðM þ MP þ nmÞ €Z þ 4c _Z þ 4kZ � dðMP €aþ 4c_aþ 4kaÞ ¼ 0; (29)

Jx þ JPx þ MPd2
þ M�2 sin2ot þ mR2

Xn

i¼1

sin2ðf�
i þ otÞ

" #
€a

þ ðb2
þ 4d2

Þc þ 2M�2o sinot cosot þ 2mR2o
Xn

i¼1

sinðf�
i þ otÞ cosðf�

i þ otÞ

" #
_a

þ ðb2
þ 4d2

Þka� M�2 sinot cosot þ mR2
Xn

i¼1

sinðf�
i þ otÞ cosðf�

i þ otÞ

" #
€b

þ Jzoþ 2M�2o sin2ot þ 2mR2o
Xn

i¼1

sin2 ðf�
i þ otÞ

" #
_b� dðMP

€Z þ 4c _Z þ 4kZÞ ¼ 0; ð30Þ
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Jy þ JPy þ M�2 cos2ot þ mR2
Xn

i¼1

cos2ðf�
i þ otÞ

" #
€b

þ a2c � 2M�2o sinot cosot � 2mR2o
Xn

i¼1

sinðf�
i þ otÞ cosðf�

i þ otÞ

" #
_bþ a2kb

� M�2 sinot cosot þ mR2
Xn

i¼1

sinðf�
i þ otÞ cosðf�

i þ otÞ

" #
€a

� Jzoþ 2M�2o cos2ot þ 2mR2o
Xn

i¼1

cos2ðf�
i þ otÞ

" #
_a ¼ 0; ð31Þ

½Jz þ JPz þ MPd2
þ M�2 þ nmR2�€gþ ða2 þ b2

þ 4d2
Þc_gþ ða2 þ b2

þ 4d2
Þkg

þ dðMP
€X þ 4c _X þ 4kX Þ þ mR2

Xn

i¼1

€fi ¼ 0; ð32Þ

mR2ð€gþ €fiÞ þ D _fi � mRf €X sinðf�
i þ otÞ � €Y cosðf�

i þ otÞg ¼ 0; i ¼ 1; 2; . . . ; n: (33)

Note that Eqs. (27)–(29) predominantly govern the translational motions of the feeding deck
while Eqs. (30)–(32) govern the rotational motions. Eq. (33) is mainly related to the motions of the
balancing balls.
4. Stability analysis

In order to find the parameter ranges in which the ABB is working, and to evaluate the
balancing performance of the ABB, the dynamic stability of a commercial optical disk drive with
an ABB is analyzed in the neighbourhood of the balanced equilibrium position. In the ABB for an
optical disk drive, about ten balls are usually used. However, the stability analysis of the ten-ball
case is very numerically complex because of the large degrees of freedom and various equilibrium
positions. Therefore, in numerical simulations, the case of n ¼ 2; i.e., the case in which the ABB
has only two balancing balls, is mainly considered for simplicity of the analysis (the time responses
for the case of n ¼ 10 will be presented in the next section for verification). When n ¼ 2; the
equilibrium positions of the balancing balls calculated by Eq. (26) are

f�
1 ¼ �f�

2 ¼ �tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mR=M�Þ2 � 1

q
: (34)

A commercial CD-ROM drive is considered as an example. Shown in Table 1 are parameter
values used in numerical simulations unless other values are specified. In Table 1, the dimensions
and masses for the parts of the optical disk drive are measured; the stiffness value is obtained from
modal testing, and the damping values are adopted from Ref. [8]. A point to be mentioned here is
that the mass m in Table 1 is not the same as the mass of an actual balancing ball. Since the
number of balls in this study is assumed as two instead of ten, m is taken to be five times heavier
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Table 1

Parameter values of a commercial CD-ROM drive

Parameters Values

Width of the feeding deck, a 70mm

Length of the feeding deck, b 110mm

Distance between points C and P, d 30mm

Mean radius of the automatic ball balancer, R 15mm

Mass of the feeding-deck assembly, MP 150 g

Mass of the equivalent rotor, M 26 g

Mass of the balancing ball, m 0.43 g

Mass moments of inertia of the feeding-deck assembly, JPx 1:43� 10�4 kgm2

JPy 0:31� 10�4 kgm2

JPz 1:74� 10�4 kgm2

Mass moments of inertia of the equivalent rotor, Jx 1:46� 10�6 kgm2

Jy 1:46� 10�6 kgm2

Jz 2:93� 10�6 kgm2

Stiffness of the suspension washer, k 3972N/m

Damping coefficients of the suspension washer, c (rubber) 2.53 kg/s

c (metal) 0.66 kg/s

Drag coefficient of the balancing ball in the fluid, D 5� 10�6 kgm2=s
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than the mass of an actual ball for reality. Also, the value of the eccentricity is assumed to be
� ¼ 0:25mm unless an other value is specified.
First of all, the natural frequencies of the system when m ¼ o ¼ 0 are calculated from the

linearized equations (27)–(32). Note that the presence of the balancing balls has effects on the
natural frequencies [12]. The natural frequency related to the translational motions in the X, Y
and Z directions is obtained as o0  298 rad=s: Note that the values of the translational natural
frequencies in the X, Y and Z directions are found to be almost the same because the stiffness of
the suspension washer is assumed to be identical regardless of the directions. On the other hand,
the natural frequencies of the rotational motions about the X-, Y- and Z-axis are calculated as
oa ¼ 535 rad=s; ob ¼ 750 rad=s and og ¼ 577 rad=s; respectively. It is seen that the rotational
natural frequencies of the system are higher than the translational natural frequencies.
At this stage, it is valuable to note that Eqs. (27)–(33) can be divided into two independent

groups. The first group consists of the coupled equations of the translational ðX ;Y Þ and
rotational ðg;fiÞ coordinates, used to describe the in-plane motions, as shown in Eqs. (27), (28),
(32) and (33). The other group is the coupled equations of the translational ðZÞ and rotational
ða;bÞ coordinates, used to describe the out-of-plane motions, as shown in Eqs. (29)–(31). Since the
in-plane (first group) and out-of-plane (second group) motions are decoupled with each other in
the neighbourhood of the balanced equilibrium position, the stability analysis can be performed
separately.
For the in-plane motions when n ¼ 2; Eqs. (27), (28), (32) and (33) can be rewritten in

vector–matrix form as

MI
€XI þ CI

_XI þ KIXI ¼ 0; (35)
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where MI ; CI and KI are the in-plane mass, damping and stiffness matrices, respectively, and

XI ¼ fX Y g f1 f2g
T: (36)

Note that MI ; CI and KI are periodic in time due to the rotation of the spindle motor, and the
period of the matrices is TI ¼ 2p=o:
Similarly, for the out-of-plane motions, Eqs. (29)–(31) can be expressed as

MO
€XO þ CO

_XO þ KOXO ¼ 0; (37)

where MO; CO and KO are the out-of-plane mass, damping and stiffness matrices, respectively,
and

XO ¼ fZ a bgT: (38)

It is found that MO and CO are also periodic in time and they can give rise to parametric
instabilities. The period of the out-of-plane mass and damping matrices is TO ¼ TI=2:
To investigate the stability of the non-autonomous system with the time-dependent periodic

coefficients, the Floquet theory [13,14] is used. For convenience of discussion, the following
dimensionless parameters are introduced:

ō ¼
o
o0

; B ¼
2c

o0ðM þ MPÞ
; D̄ ¼

D

mR2o0

; �̄ ¼
�

R
; m̄ ¼

m

M
; (39)

where o0 is the translational natural frequency of the system as mentioned before. It is almost
impossible to consider the stability of the system for the variations of all parameters
simultaneously; thus, in this study the stability is analyzed for the variations of pairs of
parameters, i.e., ō versus B; ō versus D̄; ō versus �̄; and ō versus m̄; while other parameter values
are fixed as shown in Table 1.
The stability of the in-plane motions is first analyzed, and then that of the out-of-plane motions

is investigated. First, the Floquet theory is applied to Eq. (35) to evaluate the influence of the
energy dissipation factors, c and D; on the stability of the system in the neighbourhood of
the balanced equilibrium position for the variations of the rotating speed o: Shown in Fig. 4 are
the stability plots for the dimensionless rotational speed ō versus the damping factor B: To obtain
the plots, o and c are varied while other parameter values are fixed. In Fig. 4(a), the maximum
values of jlj; where l is the characteristic multiplier [13], are plotted for the various sets of o and c:
In general, a system is stable when jljmaxo1; and the less jljmax; the more stable. Therefore, the
three-dimensional plot in Fig. 4(a) shows how stable or unstable the system is. However, the
three-dimensional plot cannot clearly visualize the stability boundaries in ō–B domain. The two-
dimensional plot is thus provided in Fig. 4(b), and only two-dimensional plots will be presented
for the stability analysis of other parameter sets. The dotted area is a balanced stable region, and
the unmarked area denotes an unbalanced region. It is seen that the system cannot be balanced
without damping, and the balanced stable range of ō is increased as B increases. It is also observed
that the system cannot be balanced when ō is lower than 1. In other words, the ABB does not
work when the rotating speed of the spindle motor is lower than the translational natural
frequency of the system. This observation is consistent with the results in the literature [6,8]. On
the other hand, it is also interesting that an unbalanced region exists around ō  2 when B is lower
than about 0.03. (Note that the values of B for metal and rubber suspension washers are 0.025 and
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two-dimensional plot.
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0.1, respectively [8].) This unbalanced region at ō  2 is related to the rotational motion of the
feeding deck, and details on the region are discussed in Ref. [10].
Shown in Fig. 5(a) is the stability plot for ō versus the dimensionless drag coefficient D̄: In the

simulation, o and D are varied while other parameter values are fixed as given in Table 1 (the
rubber suspension washer is used). It is seen that the shapes of Figs. 4(b) and 5(a) are very similar
to each other; thus, the comments made from Fig. 4(b) can also be applied to Fig. 5(a). Both the
fluid damping D and the damping of the suspension washers c are essential as energy dissipation
factors to obtain balancing. The stability plot for the dampings D̄ and B (i.e., D and c) when ō ¼ 2
is given in Fig. 5(b).
Next, the eccentricity of the rotor system is considered. Fig. 6 is the stability plot obtained by

the Floquet theory for ō versus �̄: In the plot, the upper limit of eccentricity which can be balanced
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is denoted by �̄lim: Note that the horizontal solid line corresponding to �̄lim can also be obtained
from Eq. (34) by using the condition that f�

1 and f�
2 exist. It is observed that, in order to obtain

balancing, ō should not be lower than 1 and �̄ should be lower than �̄lim: In the design process of
commercial CD-ROM or DVD drives, the maximum amount of imbalance, defined by M times
�max; is usually assumed as 10 gmm. For the given M the maximum eccentricity �max is about
0.38mm (i.e., �̄max ¼ 0:025), and the amount should be balanced to satisfy the design specification
of the ABB. As shown in Fig. 6, �̄max can be balanced when ō41:1 by the balancing balls.
Fig. 7 shows the stability plots for ō versus the mass of a balancing ball m̄: In Figs. 7(a) and (b),

the values of B are 0.1 (for rubber washers) and 0.025 (for metal washers), respectively, and other
parameter values are given in Table 1. The horizontal solid lines, which represent the minimum
mass of a balancing ball to achieve balancing for the given values of �; M and R; can also be
obtained from Eq. (34). It is seen in Fig. 7(a) that, to be balanced, m̄ should be larger than m̄lim;
and for a selected m̄ the rotating speed o should be greater than a specific speed related to o0:
Similar plots can be found in the studies of the Jeffcott rotor [6] and the two-dimensional optical
disk drive [8]. However, the stability plot in Fig. 7(b) for the metal washer has a different shape
compared to Fig. 7(a). In Fig. 7(b), new unbalanced regions are found near ō  2 inside the
balanced region. Special attention is thus needed to guarantee balancing in lower damping cases,
for example metal washers. In fact, the speed (ō  2) is related to the rotational natural
frequencies of the system. Therefore, the result corresponding to Fig. 7(b) could not be obtained
by the Jeffcott [6] and two-dimensional [8] models in which the rotational motions were not
accounted for.
The Floquet theory is now applied to the out-of-plane equation (37). The stability analyses for

the out-of-plane motions are performed to obtain similar plots corresponding to Figs. 4–7 for the
in-plane motions. From the analyses for the variations of pairs of parameters, i.e., ō versus B; ō
versus D̄; ō versus �̄; and ō versus m̄; it is found that the out-of-plane motions are always stable in
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Fig. 8. Stability of the out-of-plane motions for the dimensionless rotational speed ō versus the dimensionless mass of a

balancing ball m̄ when B ¼ 0:025:
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the practical regions of all parameter values considered in Figs. 4–7. For example, Fig. 8 shows
the stability plot for the out-of-plane motions corresponding to Fig. 7(b) for the in-plane motions.
It is seen in Fig. 8 that an unbalanced region occurs around ō  2:5 due to parametric resonance.
However, the mass of a ball corresponding to the parametric resonance zone is too heavy to be
practical. On the other hand, in the practical region of mass (i.e., m̄o0:1), the out-of-plane
motions are stable at all ō considered in Fig. 8. Therefore, the stability of the system is determined
dominantly by the stability plot of the in-plane motions shown in Fig. 7(b). Similar situations are
observed from the stability plots for other parameters. Finally, it can thus be concluded that the
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design guidelines distilled from the linearized, in-plane equations of motion can be effectively
applied to the ABB installed in optical disk drives in three-dimensional motions.
5. Time responses

The time responses for the motions of the balancing balls and the feeding deck are obtained in
order to verify the results of the stability analysis, and to show the performance of ABB. From the
nonlinear equations of motion given by Eqs. (18)–(24), the time responses are computed by the
Runge–Kutta method. The initial conditions are given as X ð0Þ ¼ Y ð0Þ ¼ Zð0Þ ¼ 0:3mm; að0Þ ¼
bð0Þ ¼ gð0Þ ¼ 0� and f1ð0Þ ¼ �f2ð0Þ ¼ 60�: First, three points in Fig. 7(b), labelled P1 ðm̄ ¼

0:03; ō ¼ 0:8Þ; P2 ðm̄ ¼ 0:03; ō ¼ 2:18Þ and P3 ðm̄ ¼ 0:03; ō ¼ 2:7Þ; are considered to verify the
stability plot.
Fig. 9 shows the time responses for point P1 which is located on the unbalanced region. In

Fig. 9(a), r̄ is the non-dimensionalized displacement of the centre of the rotating system defined by
r̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ Y 2 þ Z2

p
=R: When the system is balanced, r̄ should be zero. However, r̄ in Fig. 9(a)

approaches a non-zero value. It is seen in Fig. 9(b) that the angular positions of the two balancing
balls, f1 and f2; converge to an identical value which means that the balls are overlapped. It is
due to the fact that the impact and geometric interference between balancing balls are neglected in
the study. Considering these effects, the model could be more precise. However, it may be too
complex to perform efficiently the stability analysis. It is also seen that the balls settle down near
0�: It means that the balls are located in the direction of mass imbalance. Thus, as predicted in the
stability plot, the system cannot be balanced when the rotating speed is lower than the
translational natural frequency.
Shown in Fig. 10 are the responses for point P2: The displacement and ball positions do not

converge but fluctuate continuously with time since the point P2 is located in the unbalancing
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Fig. 9. Time responses for point P1: (a) the non-dimensionalized displacement of the centre of the rotating system,

(b) the angular positions of the two balancing balls.
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zone due to the rotational motion as investigated in the stability analysis. It is seen that the
vibrations are very severe; thus, this situation should be avoided.
For the case of point P3 the non-dimensionalized displacement r̄ converges to zero as time

increases, as shown in Fig. 11(a). The ball positions in Fig. 11(b) converge to the constant values
of about �106�: This means that the balancing balls are located in the opposite direction of mass
imbalance, and the system is thus balanced as predicted in the stability plot. Recall that the
stability plot in Fig. 7(b) is generated from the linearized, in-plane equations of motion. However,
the stability plot is verified here by the time responses obtained from the coupled, nonlinear
equations considering the three-dimensional motions of the feeding deck. It can be concluded
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Fig. 10. Time responses for point P2: (a) the non-dimensionalized displacement of the centre of the rotating system,

(b) the angular positions of the two balancing balls.
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that, even though the stability analysis is performed based on the simple linear equations, the
results can be effectively used to select the design parameter values of the ABB which can make
the three-dimensional system balanced.
To illustrate the performance of the ABB the time responses of point P3 are presented again.

Shown in Fig. 12 are the translational and rotational responses obtained from the nonlinear
equations when the ABB is not installed, while shown in Fig. 13 are the responses when the ABB
is installed. If there is no ABB, the eccentricity due to mass imbalance makes the in-plane motions
of system vibrating as shown in Figs. 12(a), (b) and (f). However, if the ABB is working, the in-
plane translational vibrations disappear as shown in Figs. 13(a) and (b). The in-plane rotational
angle g shown in Fig. 13(f) also converges to zero when the ABB enables the system to be
balanced. On the other hand, shown in Figs. 12(c)–(e) and 13(c)–(e) are the out-of-plane time
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Fig. 12. Time responses for point P3 when the ABB is not installed: (a) the in-plane translational displacement X,

(b) the in-plane translational displacement Y, (c) the out-of-plane translational displacement Z; (d) the out-of-plane

rotational angle a; (e) the out-of-plane rotational angle b; (f) the in-plane rotational angle g:
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responses. Note that all the out-of-plane vibrations diminish with time regardless of the existence
of the ABB. Therefore, it is believed that a dominant player to damp out the out-of-plane motions
is not the ABB but energy dissipation by the suspension washers. However, it can also be noticed
in this case that at least the ABB dose not make the out-of-plane motions grow, although it does
not contribute toward eliminating the vibrations.
At this stage, it is valuable to make one more comment regarding the effects of the ABB on the

out-of-plane motions. Recall that all the mass centres are assumed to be on the same plane in the
modelling process because the latest optical disk drives are slim. However, if the more general
case, in which the mass centres are located on the different planes, is considered, a modified three-
dimensional model of the feeding deck and rotor system may need to be developed as mentioned
in Section 2. In addition, the ABB may have influences on the out-of-plane vibrations in this case
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(see Ref. [11] for the order of magnitude of the tilting angle: 0.00004761 for the typical system with
an ABB). To make the general system balanced perfectly, the authors suggest using two ABBs on
the different planes. This type of balancing is often called the two-plane balancing. However, the
modelling and analysis methods for the case are believed to be almost the same as those in this
study. Therefore, the procedure used in this study can also be adopted easily and effectively in the
two-plane balancing analysis.
Now, a special situation, in which the mass unbalance is greater than the balancing capacity of

the balancing balls, is briefly investigated. Fig. 14 shows the time responses for the point P4 ð�̄ ¼
0:04; ō ¼ 1:5Þ in Fig. 6. As predicted in Fig. 6, the system having the parameter values of P4

cannot be balanced since the unbalance amount is greater than �̄lim: However, it is noticed in Fig.
14 that the magnitude of the residual vibration of the system with the ABB is much smaller than
that of the system without the ABB. Therefore, the use of the ABB is still beneficial although the
system is not perfectly balanced.
Lastly, the time responses when the number of balancing balls n ¼ 10 will be presented since, as

mentioned before, about ten balls are usually used in the ABB for an optical disk drive. As an
example, the case of point P3 in Fig. 7(b) is considered. Recall that the point P3 has been predicted
as a stable point when n ¼ 2; and the corresponding time responses have been shown in Fig. 11.
For n ¼ 10 the time responses are shown in Figs. 15 and 16: (a) the non-dimensional displacement
r̄ and (b) the positions of ten balancing balls versus time. It is seen that the initial positions of ten
balls in Fig. 15(b) are close to �60� while those in Fig. 16(b) are scattered within the race. For
reasonable comparisons the total mass of balancing balls is given to be the same in all cases
(Figs. 11, 15 and 16). First of all, in Figs. 15(a) and 16(a), the displacement r̄ converges to zero as
time increases, and the system is finally balanced as predicted in Fig. 7(b) for n ¼ 2: Also, the
magnitude of displacement and the converging time in Figs. 15(a) and 16(a) are very similar to
those in Fig. 11(a). Therefore, the analysis results based on the two-ball assumption may be
effectively used for the design of an ABB having many balancing balls. It is also seen that the
steady-state locations of the balancing balls in Fig. 15(b) are similar to those in Fig. 11(b) because
the initial positions of the balls are almost the same in both simulations. However, the steady-state
locations of the balancing balls in Fig. 16(b) are different from those in Fig. 15(b). It means that
the equilibrium positions of the balancing balls when n ¼ 10 are not unique, and depend on initial
conditions. This situation usually makes the stability analysis more complex. The analysis
procedure studied in this article using two balancing balls can thus be an alternative to the
problem.
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Fig. 14. Time responses for point P4: (a) when the ABB is installed, (b) when the ABB is not installed.
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dimensionalized displacement of the centre of the rotating system, (b) the angular positions of the balancing balls.

W. Kim et al. / Journal of Sound and Vibration 285 (2005) 547–569 567
6. Summary and conclusions

A dynamic model is developed for a commercial optical disk drive with an automatic ball
balancer, considering the translational and rotational motions in the three-dimensional space.
From the model, the coupled nonlinear equations of motion are derived by using Lagrange’s
equation. Applying the perturbation method to these equations, linearized equations in the
vicinity of the equilibrium position as well as a balanced equilibrium position are obtained. The
perturbed linear equations are categorized into two independent groups for the small motions of
the in-plane and the out-of-plane. Based on the equations of each group, the stability analyses are
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performed by using the Floquet theory because the equations have time-dependent periodic
coefficients. The stability plots are presented for some parameters of the system, for example,
rotating speed, ball mass, eccentricity and damping, to investigate their effects on the balancing
performance of the ABB. The time responses for the three-dimensional motions of the feeding
deck are also computed from the nonlinear equations of motion to verify the results of the
stability analysis.
It is observed from the stability plots and time responses that the dynamics of the ABB is deeply

related to not the out-of-plane but the in-plane motions. It can thus be concluded that the two-
dimensional, in-plane model instead of the three-dimensional full model can be effectively used for
predicting balancing regions and for selecting ABB parameters in a design process. In fact,
the analysis based on only the in-plane motions is much simpler and faster than that of the
three-dimensional motions. However, the in-plane rotational motion should not be neglected in
the in-plane model to account for unbalanced regions related to the rotational natural frequency
of the system. It has been well known from the literature that the rotating speed should be greater
than the translational natural frequency to be balanced by the ABB. However, it is observed in
this study that the criterion for the translational natural frequency could not guarantee the
balancing of an optical disk drive. An important point which has to be added to the guidelines of
the literature is that not only the translational but also the rotational natural frequencies should
be considered when operating speeds are selected.
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